Groin Strains

groin 2

instagram-icons facebook twitter youtube-icon-full_color

By Ashley Pena, DPT

Groin strains make up 8- 18% of all soccer injuries and also occur in many other high intensity sports such as Ice Hockey, Football, Basketball, and more. They are typically found to occur during kicking, cutting, pivoting, changing directions, or when planting the lead foot. In a prospective research study looking at the athletic population, Serner et. al. found that in soccer players, kicking was the most common mechanism of injury at 40%. In other sports, changing directions was the most frequent mechanism at 31%. In addition, Serner found that 66% of these groin strains resulted in injuries to the Adductors (primarily Adductor Longus). Iliopsoas and Proximal Rectus Femoris were also found to be frequently injured with 15-25% of the groin strain participants sustaining these injuries.

Some factors which have been found in past research to be related to an increased risk of groin strains include older age, level of competition or experience, decreased range of hip abduction and rotation, isometric adductor muscle weakness or high abductor/adductor strength ratio, and poor performance in vertical jump tests. Specifically, in a cohort study done by Moreno-Perez et. al. it was found that players with groin injuries showed weaker isometric hip adductor strength and smaller Adductor/Abductor strength ratios than those without groin injuries giving evidence that screening for adductor strength deficits or Add/ Abd. muscle imbalances may be helpful in avoiding groin injuries.

ashleyBlog Post written by Ashley Pena, DPT Student from Cal State Northridge. At the time of publishing, Ashley was in her final clinical rotation with me at Catz PTI.

References:

  1. Elattar O, Choi H-R, Dills VD, Busconi B. Groin Injuries (Athletic Pubalgia) and Return to Play. Sports Health: A Multidisciplinary Approach. 2016;8(4):313-323. doi:10.1177/1941738116653711.
  2. Moreno-Pérez V, Lopez-Valenciano A, Barbado D, Moreside J, Elvira J, Vera-Garcia F. Comparisons of hip strength and countermovement jump height in elite tennis players with and without acute history of groin injuries. Musculoskeletal Science and Practice. 2017;29:144-149. doi:10.1016/j.msksp.2017.04.006.
  3. Serner A, Tol JL, Jomaah N, et al. Diagnosis of Acute Groin Injuries. The American Journal of Sports Medicine. 2015;43(8):1857-1864. doi:10.1177/0363546515585123.
  4. Tyler TF, Silvers HJ, Gerhardt MB, Nicholas SJ. Groin Injuries in Sports Medicine. Sports Health. 2010;2(3):231-236. doi:10.1177/1941738110366820.

Forward Head Posture


instagram-icons facebook twitter youtube-icon-full_color

By Ashley Pena, DPT Student

Although “forward head posture” (FHP) has long been regarded as a problem leading to pain and disability, with increased time spent on smartphones in recent years, it is becoming a very common source of pain. In a study performed by Kim et. al. which studied the effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults using EMG analysis, it was found that prolonged smartphone use resulted in increased upper trapezius and cervical erector spinae fatigue.

As a result of FHP, compensatory motions occur such as severe extension of the upper cervical spine. Often seen in conjunction with FHP, rounded shoulder posture (RSP) occurs when the acromion protrudes anterior to the shoulder joint. Scapular elevation, protraction, and downward rotation are also seen. Several studies have found that this combination of FHP and RSP promote an imbalance in muscle strength and length leading to Janda’s Upper Crossed Syndrome:

  • Weakness of the deep neck flexors, middle and lower trapezius, and serratus anterior
  • Stiffness of the pecs, upper trapezius, levator scapulae, SCM and suboccipitals.

Together, these impairments can lead to dysfunctions at the OA joint, C4/C5 segment,  CT junction, or GH joint resulting in neck and/or shoulder pain and increased disability.

Below is a 3 part video series to help you gain mobility and build postural strength to combat our love affair with cell phones and laptops.

Blog Post written by Ashley Pena, DPT Student from Cal State Northridge. Ashley is currently in her final clinical rotation with me at Catz PTI.

References:

  1. Kim E-K, Kim JS. Correlation between rounded shoulder posture, neck disability indices, and degree of forward head posture. Journal of Physical Therapy Science. 2016;28(10):2929-2932. doi:10.1589/jpts.28.2929.
  2. Kim S-Y, Koo S-J. Effect of duration of smartphone use on muscle fatigue and pain caused by forward head posture in adults. Journal of Physical Therapy Science. 2016;28(6):1669-1672. doi:10.1589/jpts.28.1669.
  3. Kwon JW, Son SM, Lee NK. Changes in upper-extremity muscle activities due to head position in subjects with a forward head posture and rounded shoulders. Journal of Physical Therapy Science. 2015;27(6):1739-1742. doi:10.1589/jpts.27.1739.
  4. Upper Crossed Syndrome. Muscle Imbalance Syndromes RSS. http://www.muscleimbalancesyndromes.com/janda-syndromes/upper-crossed-syndrome/. Accessed June 13, 2017.

Is Your Lack of Ankle Mobility Increasing Your Risk for Knee Injury?

img_0176
instagram-iconsfacebooktwitter Follow Chris Butler Sports PT

By Ashley Pena, DPT Student
 According to the NCAA Injury Surveillance system, knee internal derangements accounted for the highest percentage of more severe injuries sustained by college athletes (44.1% in games and 25.5% in practices) and approximately 70% of all game and practice injuries affected the lower extremities. As a result of these studies, much thought has gone into what factors contribute to this in an attempt to prevent, or rehabilitate these injuries while decreasing pain and improving performance. Although there are many factors which have been found to contribute such as muscle weakness, body type, training factors and others, little thought is given to the ankle joint unless it is giving the athlete pain.
When a person lacks dorsiflexion range of motion, often times compensations begin to manifest such as excessive pronation or “fallen arch”,  hip external rotation or “out-toeing” during walking, or lack of knee flexion with landing, all of which can increase the valgus forces on the knee and decrease shock absorption which can place a person more at risk for ACL injury, meniscus injury, or collateral ligament strains. In a systematic literature review done by Mason-McKay et. al, strong evidence was found that a restriction in DF ROM alters landing mechanics with specific studies reporting that altered frontal plane ankle motion (inversion and eversion), reduced sagittal knee excursion, and greater peak knee valgus.
 Blog Post written by Ashley Pena, DPT Student from Cal State Northridge.  Ashley is currently in her final clinical rotation with me at Catz PTI.

Sources:

  1. Arendt E, Dick R. Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. The American Journal of Sports Medicine. 1995;23(6):694-701.
  2. Dick RM, Putukian M. Descriptive Epidemiology of Collegiate Women’s Soccer Injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 Through 2002–2003. Journal of Athletic Training. 2007;42(2):278-285.
  3. Kerr ZY, Marshall SW. College Sports–Related Injuries — United States, 2009–10 Through 2013–14 Academic Years. Centers for Disease Control and Prevention. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6448a2.htm. Published December 11, 2015. Accessed June 5, 2017.
  4. Mason-Mackay A, Whatman C, Reid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review. Journal of Science and Medicine in Sport. 2017;20(5):451-458. doi:10.1016/j.jsams.2015.06.006.
  5. Taunton JE, Ryan MB, Clement DB, McKenzie DC, Llyod-Smith DF, Zumbo BD.  A retrospective case-control analysis of 2002 running injuries.  Br J Sports Med 2002; 36: 95-101.

What is Turf Toe?


instagram-iconsfacebooktwitter  Click to follow

By Meggie Morley, DPT

During Game 3 of the Clipper’s series against the Utah Jazz, Blake Griffin suffered an injury to his toe that would rule him out for the remainder of the playoffs. He recently underwent surgery to treat his injury, which was reported as an injury to the plantar plate of his big toe. This injury is also known as turf toe, and even though it may seem like a small injury it can greatly affect the ability to participate in sports, recreational activities and even walking.

Toe Anatomy

Turf toe typically refers to an injury to the big toe. The big toe is comprised of two bones, known as the distal and proximal phalange. The proximal phalange attaches to the metatarsal bone in the foot, forming the metatarsal phalangeal joint (MTP). Underneath the MTP is the plantar plate, a small sesamoid bone, and various ligaments and muscle attachments.   Turf toe 2

Mechanics of Injury

Turf toe typically occurs when the first toe is hyperextended. In other words, when the toes are planted on the ground and the rest of the foot is lifting off the ground. This position places strain on the bottom of the MTP joint, causing damage to the plantar plate and surrounding structures. This injury occurs commonly on turf due to the harder surface, which can cause the toes to be stuck in place. The symptoms of turf toe include pain, tenderness, bruising, stiffness and swelling at the joint.  Parents should watch for avoidance behaviors and painful gait patterns in their children.

Ligament Sprain Grade

Grade I: The ligament is stretched and there may be small tears

Grade II: Large tear, but the tear doesn’t completely go through the ligament

Grade III: Complete rupture of the ligament

Recovery time depends on the grade of the sprain, and in the case of complete tears surgery may be necessary. For any turf toe injury, rest is required in order to allow for healing.  Bracing, splinting and taping are often used for weight bearing tolerance so it is important to prevent adhesions in the injured structures. Passive ROM can be initiated within a few days of Grade I and II injuries along with non-impact activities. Grade III injuries require immobilization but even if surgery is needed, ROM can be performed at 5-7 days post op.  Make sure to see a PT and find out what you can be doing throughout all phases of recovery.

FullSizeRender 9Blog Post written by Meggie Morley, DPT.  At the time of posting Meggie was in her final clinical rotation with me at Catz Physical Therapy Institute.

References

1. Stanley, Laura. Physical Therapist’s Guide to Turf Toe. Retrieved from http://www.moveforwardpt.com/symptomsconditionsdetail.aspx?cid=6db543a6-7a53-4dcd-8141-3137c4391f07

2. McCormick JJ, Anderson RB. Turf toe: anatomy, diagnosis, and treatment. Sports Health. 2010; 2(6):487–494.

3. Garguilo, C. (2015). Foot and Ankle Orthopedics (Power Point slides). Retrieved from https://courseworks.columbia.edu/access/content/group/PHYTM8610_081_2015_2/Lectures/Ankle/Camtasia%20Foot%20and%20Ankle%20Lectures/Camtasia%20Lecture%20Foot%20Ankle%20Disorders%20Handout%202015%20Section%203.pdf

Bike Fitting Basics: Keep Riding, Reduce Your Injury Risk

bike 6

instagram-iconsfacebooktwitter Chris Butler Sports PT is Social

By Michael Joseph, DPT Student

In my three years working as a professional bicycle fitter I have done fits for every level of cyclist, from individuals who were purchasing their first road bike to professional level cyclists and national team members. A properly fit road bike is imperative to ensure the frame and components are the right size for the rider.  The purpose of professional fitting is to reduce pain, increase comfort and maximize speed and efficiency. The following article will cover basics of fit measurements, positioning, and reasons why riders may be experiencing pain or discomfort on the bike. The bulk of this content is based on my professional experience as a bicycle fitter and the training I received from GURU Cycling.

Saddle Height 

Saddle height is measured with the rider seated on the saddle with his or her foot at the 6 o’clock position. The rider’s pelvis should be level on the saddle and there should be 40 degrees of knee flexion (plus/minus 5 degrees). Measure both legs to ensure no there are no imbalances. Common symptoms of a saddle that is too high include IT band syndrome, posterior knee pain, and hip or low back pain. Common symptoms of a saddle that is too low is anterior knee pain from stress on the quadriceps and patellar tendons.

Saddle Setback

Saddle setback refers to the fore and aft position of the saddle. When the foot is in the 3 o’clock position, the front surface of the knee should be directly over the pedal spindle. This can be measured using a plumb bob or laser. The rider should feel like they are pushing the pedal straight down, not in front of them or behind them; the pedal stroke should feel powerful and efficient. If the saddle is set too far back, it can irritate the IT band and hamstrings tendons. If it is too far forward, it may put excessive pressure on the quadriceps and patellar tendons.

Type of saddle  

Saddle selection is highly subjective. Every manufacturer seems to develop their own way of fitting a saddle to a rider. This can include basing it on width of the pelvis, sit bone pressure points, or spinal flexibility. However, the best way to determine the which type of saddle to use is to test ride it. Saddle selection is all about finding the saddle that fits the rider’s body type.

Cleats  bike 7

Cleat fitting might warrant an entire article all on its own, but here are some basics.

The fore aft position of the cleat on the shoe should align the ball of the foot with the pedal spindle. The medial/lateral position of the cleat should position the knee directly over the foot. The rotational position of the cleat should position the foot so it is facing directly forward. Knee pain can be caused by improper foot and cleat positioning. If a rider has knee pain and the saddle height and setback are positioned correctly, cleat positioning may be the culprit.

Handlebar Reach

Handlebar reach is defined as the distance from the saddle to the handlebar and is measured from the front tip of the saddle to the center of the tubing of the handlebar. When fitting reach, the rider should place his or her hands on the brake hoods. The reach should be as long as possible, while still feeling comfortable. A longer reach allows for a longer stem, which makes the front of the bike more stable and makes steering more responsive. However, in this position the shoulder should not exceed 90 degrees of flexion. There should also be about 15 degrees of elbow flexion. If the reach is too long, the rider may experience elbow pain, tension in the neck and shoulders, and back pain.

Handlebar Drop

Handlebar drop is defined as the difference in height between the saddle and the handlebar. Increasing the drop makes the rider position more aggressive and aerodynamic. This may be ideal for a rider participating in stage or criterium racing. However, for a leisure rider, a more upright position will likely be more comfortable. If the drop is too low, the rider will experience symptoms in the hands and wrists, such as pain from too much weight on the hands. This can also cause nerve irritation; riders may experience numbness, tingling, and burning sensations in the hands.   

FullSizeRender 15 Blog Post written by Michael Joseph, DPT Student at Mount Saint Mary’s University. Michael is currently in his final Clinical Rotation with me at Catz Physical Therapy Institute.

Sources:

  1. www.gurucycling.com
  2. Asplund, Chad, St. Pierre, Patrick. Knee Pain and Bicycling: Fitting Concepts for Clinicians. The Physician and Sports Medicine. April 2004. 32(3).

What are Shin Splints?

IMG_9771

instagram-iconsfacebooktwitter Follow Chris Butler Sports PT

By Michael Joseph, DPT Student

Definition and Risk Factors:

Medial Tibial Stress Syndrome (MTSS), better known as shin splints, is a common athletic injury caused by repetitive stress to the tibia. MTSS is more prevalent in activities involving a great deal of running and jumping, like distance running, sprinting, basketball, tennis, gymnastics, and dancing; it is also common in military personnel. MTSS can be caused by many factors stressing the tibia, including: periostitis (inflammation of connective tissue surrounding bone), periosteal remodeling, tendinopathy, and dysfunction of muscles surrounding the tibia, like the tibialis posterior, tibialis anterior, flexor digitorum longus, and soleus muscles. Risk factors for MTSS include flat feet and/or over-pronation, repetitive running and jumping, excessive hip range of motion, smaller calf girth, and a body mass index above 20.2.

Symptoms:

Symptoms include pain of the middle and lower thirds of the medial shin. Individuals may experience pain during and/or after physical activity. During the early onset of MTSS, symptoms may be felt at the beginning of exercise, but may subside as activity continues. As MTSS progresses, pain may be felt throughout exercise and may linger afterwards.

Diagnosis:

A thorough physical therapy subjective and objective exam is usually sufficient to diagnose MTSS. However, patients may require further imaging or work up to rule out pathologies like stress fractures, exertional compartment syndrome, or peripheral vascular disease.

Management of Shin Splints:

Acute Phase:

The goal of physical therapy in the acute phase is to reduce pain and inflammation. This can be done through stretching, manual therapy of the injured tissue, taping, icing, and rest. For many athletes prolonged rest from their sport is not ideal. MTSS management may require “relative” rest, meaning their activity level may need to be adjusted but not stopped completely. This depends on the activity and severity of the pathology.

Subacute Phase:

The goal of physical therapy in the subacute phase is to modify training regimens and correct biomechanical abnormalities. According to Galbraith et al, reducing weekly training frequency and intensity by 50% will likely improve symptoms without completely stopping training. However, this depends on each patient’s case and may need to be adjusted. Training can also be augmented with low impact exercises, like swimming or cycling, to help maintain strength and cardiovascular endurance.


Create a Physical Change in Your Body and Movement

Another treatment of MTSS is to strengthen the arch of the foot and hip, and increase core stability; this will help to improve jumping and landing mechanics, as well as single leg stability. Specifically, strengthening the tibialis posterior and intrinsic foot musculature will help increase arch support and prevent excessive pronation. Improving hip extensor and abductor strength can help improve lower extremity mechanics. Stretching and eccentric strengthening of the calf has also been shown to be beneficial by decreasing muscle fatigue with running and jumping.

Changing running biomechanics may also be beneficial. A study from Leiberman et al, found that heel first strike during initial contact, when running, creates an impact transient equal to nearly three times the individual’s body weight. Not only is this incredibly inefficient, but this creates a large force traveling directly up through the tibia with each step. The impact transient with forefoot first strike during initial contact is seven times lower than with a heel strike. This evidence suggests forefoot running is more efficient and less injurious. 

FullSizeRender 15Blog Post written by Michael Joseph, DPT Student at Mount Saint Mary’s University. Michael is currently in his final Clinical Rotation with me at Catz Physical Therapy Institute.

Sources:

  1. Budde, Kari Brown. Physical Therapist’s Guide to Shin Splints (Medial Tibial Stress Syndrome). http://www.moveforwardpt.com. Accessed May 11, 2017.
  2. Galbraith, R. Michael, Lavelle, Mark E. Medial tibial stress syndrome: conservative treatment options. Curr Rev Musculoskelet Med. 2009 Sep; 2(3):127-133.
  3. Lieberman, Daniel E., Venkadesan, Madhusudhan, Werbel, William A., Daoud, Adam I., D’Andrea, Susan, Davis, Irene S., Mang’Eni, Robert Ojiambo, Pitsiladis, Yannis. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010 Jan; 463:531-535.
  4. Moen, Maarten Hendrik, Holtslag, Lenoor, Bakker, Eric, Barten, Carl, Weir, Adam, Tol, Johannes L., Backx, Frank. The treatment of medial tibial stress syndrome in athletes; a randomized clinical trial. Sports Med Arthrosc Rehabil Ther Technol. 2012 Mar; 4(12).

What is Platelet Rich Plasma?

PRP 1

instagram-iconsfacebooktwitter Chris Butler Sports PT is Social

By Meggie Morley, DPT Student

In recent years the use of platelet rich plasma has been on the rise as a means of promoting healing in soft tissue structures such as tendons, muscles, ligaments and joints. With professional athletes such as Tiger Woods and Steph Curry receiving the injections as a method to promote healing, it may be useful to take a closer look at the possible effects and uses of PRP injections.

How it Works

Platelets are a component of the blood with the main function of promoting blood clotting. They also release numerous growth factors, including Platelet Derived Growth Factor (PDGF), which is a protein that helps regulate cell growth and division. PRP is made by collecting a blood sample from the patient, then centrifuging the blood to separate out the platelets.  The platelet rich plasma is then treated and injected into the patient, often with the use of ultrasound to guide the placement of the injection. PRP is made from the patient’s own blood, so there are very few side effects associated with the injections, however it is recommended to stop taking anti inflammatory medications before and after the injectionPRP 2

Article Review

In an article by Pandey et al., the effects of PRP were examined in patients who underwent arthroscopic rotator cuff repairs compared to subjects that underwent the same procedure without PRP.  The effectiveness of the treatment was measured by four different clinical scores and by ultrasound to view if there was a re-tear and the general vascularity of the rotator cuff. The results found that three of the four clinical scores demonstrated significantly better outcomes in the PRP group versus the control group at various follow up times. The other score (The American Shoulder and Elbow Surgeons Score) was comparable between the PRP and the control group at all follow-up visits. The incidence of re-tears was significantly lower in the PRP group, but only for large tears. The ultrasound also showed that there was significant vascularity at the repair site three months post operatively.

While this article showed positive outcomes for patients who received PRP, overall the evidence for the use of PRP in human subjects is still lacking. As with any medical procedure it is important to be informed and discuss your options with your physician.

FullSizeRender 9 Blog Post written by Meggie Morley, DPT.  At the time of posting Meggie was in her final clinical rotation with me at Catz Physical Therapy Institute.

References

Boswell SG, Cole BJ, Sundman EA, Karas V, Fortier LA. Platelet-rich plasma: a milieu of bioactive factors. Arthroscopy: The Journal of Arthroscopic & Related Surgery. 2012 Mar 31;28(3):429-39.

Kohen R, Warren R, Rodeo S. (2010, October 5). Platelet Rich Plasma (PRP) Treatment: An Overview. Retrieved from https://www.hss.edu/conditions_platelet-rich-plasma-prp.asp

Pandey V, Bandi A, Madi S, Agarwal L, Acharya KK, Maddukuri S, Sambhaji C, Willems WJ. Does application of moderately concentrated platelet-rich plasma improve clinical and structural outcome after arthroscopic repair of medium-sized to large rotator cuff tear? A randomized controlled trial. Journal of Shoulder and Elbow Surgery. 2016 Aug 31;25(8):1312-22.

Filardo G, Di Matteo B, Kon E, Merli G, Marcacci M. Platelet-rich plasma in tendon-related disorders: results and indications. Knee Surgery, Sports Traumatology, Arthroscopy. 2016:1-6.

5 Things to Do Before Going on a Run

running blog

instagram-iconsfacebooktwitter

By Meggie Morley, DPT Student

It is well known that exercise is crucial for living a long and healthy life, but recent studies have shown that running may actually be the most effective exercise for increasing life expectancy. In a recent study by Lee et al., it was found that running can increase a person’s life span by 3 years, and reduces the risk of premature death by 40%. The researchers also noted that the benefits are the same regardless of pace, mileage, drinking and smoking or being overweight.

Hopefully studies such as this one encourage people to take up running, so here are a few things to do before going on a run to boost performance and minimize the risk of injury. The idea behind these exercises are to warm up the muscles and joints before running as well as “turn on” the muscles we want to be active while running.

1. Warm Up

Start by simply walking for a few minutes to increase blood flow and prime the joints and muscles for motion.

2. Walking Lunges with Torso Twist-Works: Quads, gluts, hamstrings


Step forward with the right leg into a lunge. Place your right hand next to the right foot then twist your trunk to the left while reaching the left arm up towards the ceiling.

3. Planks with Knee Drive-Works: Abdominals, hip flexors


Hold a high plank with the shoulder directly over the wrists. Alternate driving the knees towards the chest ten times. Then perform ten knee drives toward the same side elbow and ten toward the opposite elbow in order to engage both the rectus abdominus and the obliques.

4. Bridges-Works: Abdominals, gluts, hamstrings


The gluteal muscles are crucial for generating power and maintaining proper biomechanics down the entire lower extremity while running. Do three sets of bridges with a focus on keeping the core engaged and lifting the hips with the gluts in order to prepare the muscles to be active during running.

5. Alternating Lunge with Medial Reach-Works: Quads, hamstrings, gluteus maximus, gluteus medius


Step forward with the right leg into a lunge and reach out to the left with the left arm. Perform ten lunges then switch sides. This places more demand on the gluteus medius, which is important for maintaining proper pelvis alignment during running.

FullSizeRender 9 Blog Post written by Meggie Morley, DPT Student at Columbia University. Meggie is currently in her final Clinical Rotation with me at Catz Physical Therapy Institute.

References

  1. Lee DC, Brellenthin AG, Thompson PD, Sui X, Lee IM, Lavie CJ. Running as a Key Lifestyle Medicine for Longevity. Progress in Cardiovascular Diseases. 2017 Mar 30.
  1. https://www.nytimes.com/2017/04/12/well/move/an-hour-of-running-may-add-seven-hours-to-your-life.html
  1. Yamaguchi T, Takizawa K, Shibata K. Acute effect of dynamic stretching on endurance running performance in well-trained male runners. The Journal of Strength & Conditioning Research. 2015 Nov 1;29(11):3045-52.

Barbell Landmines: Training/Rehab

 

IMG_8509

instagram-iconsfacebooktwitter

By Teddy Willsey, DPT, CSCS

When it comes to shoulder rehab and training, weight bearing exercises and closed chain exercises are one of the safest and most effective ways to train for size and strength while maintaining healthy joints. During closed chain exercise the body parts doing the work are moving against the ground, or a fixed point. Think of a push-up or squat. Open chain exercise is the opposite, the body parts doing the work are pushing moving a non-fixed point in the air. Think of a bench press or leg extension machine. Closed chain exercises of the upper body increase co-contraction of the rotator cuff and the surrounding musculature. IMG_8524They help contribute to the shoulder’s stability during movement and allow the scapula to move freely. The resultant efficient glenohumeral and scapulothoracic mechanics make them a safe bet for shoulder health and a great exercise for both strength training and shoulder rehab.

The landmine is a hybrid of this closed vs. open chain exercise model. It is open chain in the idea that it the resistance is moving in the air, yet closed chain in the sense that it is still attached to a fixed point on the ground and just pivoting from it. The landmine helps to mimic the feeling of weight bearing, as it’s fixed attachment point on the ground creates a vastly different stimulus to the muscle than a true open chain exercise. The landmine press and it’s variations facilitate more scapular upward rotation and serratus anterior involvement than a typical bench press. It also doesn’t require shoulder extension, thus avoiding a potentially uncomfortable when loaded range of motion for some. This shoulder IMG_8529friendly movement is safe to load and strengthen across almost all populations.

The resistance of the landmine works on an arc, as the bar is fixed and rotating about a pendulum. The motion of every exercise is dictate by this arc, doing shoulder raises on this feels vastly different than using a dumbbell or cable/band. In addition to the grounding effect of the landmine, the rotational bar path can help to mimic PNF patterned shoulder exercises and movement in the scapular plane as well. This creates a functional bar path and movement for the shoulder during front and lateral raises. It is very rare that we use our shoulders in one plane of movement, yet that’s how we often train them with bands, cables, and dumbbells.

The landmine is great for hypertrophy work. It is relatively easy to use and low risk to “cheat” and try to squeeze out a few extra reps. The resistance can be quickly changed by choking down on the bar and decreasing the lever arm as well. These kinds of adjustments allow you to extend out a set for maximal time under tension and create an optimal environment for muscle growth. The landmine is also great for cheating reps, as you can use momentum to swing the bar in it’s set path, and then slowly lower. When hypertrophy and increased muscle size is the primary goal, there are times when this is appropriate, and even necessary. This swinging motion IMG_8530can allow you to complete the set and increase the metabolic stress on the muscle, a necessary evil for hypertrophy.

There are a few rehab specific ideas that make the landmine nice for regressions and lateralizations. The landmine becomes much lighter at the very top of the arc, as more of the bar is supported by the fixed point. This can be advantageous for overhead pressing and decreasing load at the top. A lighter training barbell can also be used to further decrease the load of the landmine. I highly recommend having a 15 lb. barbell for landmines in the PT clinic. This is a great complement to your other supported active motion exercises that are used to regain motion after shoulder surgery.

Without further adieu, the videos below highlight some of my favorite landmine shoulder variations:


Landmine Side-Facing Posterior-Lateral Raise-The side facing posterior lateral raise takes the bar path up and out, targeting the posterior and lateral delts as well as the external rotators.


Landmine Front-Facing Lateral Raise-The front facing lateral raise is more challenging, as the bar path ends up further away from the body. This is a good lateral delt focus movement.

Landmine Bent Over Raise-The bent over raise is a brutal posterior delt movement that also gets the upper traps involved at the end of the bar path. It has a face pull feel to it, as it requires a lot of scapular retraction and does not really “isolate” the rear delts.


Landmine Strict Standing Press-The standing press is by far the landmine shoulder exercise I use the most. It facilitates incredible core support and serratus involvement as the bar path moves up, and is an extremely comfortable and natural pressing motion. This can be made into a push press for more full body involvement: a great movement for athletes.

Landmine Triple Superset-Supersetting these exercises can be a very effective way to burn out your shoulders and create some extra stress leading to muscle growth. In this 3-exercise combo I did half kneeling rear raises, front facing lateral raises, and side facing posterolateral raises: 5 reps of each.


Landmine Standing Scap Press-I call this the “C” press or scapular plane landmine press. The goal here is to flare the elbow and allow the arm to move closer to the scapular plane. The idea is to facilitate more scapular upward rotation. I will also sometimes encourage a trunk rotation away at the top here to create more shoulder flexion.

Healthy-Baller-Teddy-300x300  HB

Dr. Teddy Willsey, DPT, CSCS, is the director of sports medicine at Healthy Baller, a sports performance gym located in Rockville, MD, a suburb of Washington D.C. In addition to his daily practice, Teddy writes, speaks, and posts on social media regularly with the goal of educating therapists, fitness professionals, and recreational exercises on practical approaches to exercise and rehabilitation with a sports medicine and performance focus. Teddy’s work can be found on Instagram: @strengthcoachtherapy

 

BFR for In-Season Athlete Management

IMG_8199

twitterfacebookinstagram-icons

Blood Flow Restriction Training/Therapy is an excellent way to manage athletes during the season.  As athletes progress in competition level, the volume of sport specific activities increase while recovery and down regulation practices decrease.  Over the course of the season, athletes tend to breakdown,  loosing muscle mass & strength while developing ligament sprains, muscle strains, stiffness & acute tendinopathies.  In-season periodized strength training, corrective exercises and mobility work can be helpful in maintaining off-season gains and reducing injury risk.  However, traditional strength training leads to muscle breakdown prior to muscle growth, and some athletes may be dealing with acute injuries that prevent them from being able to load at an appropriate percentage.

BFR allows athletes to build muscle, prevent atrophy, and load irritated tendons at 10-20% 1RM while reaping the benefits of working at 60-80% 1RM.  Because loading takes place around 20% there is no muscle breakdown and is tolerable to achy joints or irritated tendons.

The mechanism of BFR also stimulates the release of Human Growth Hormone which is responsible for collagen synthesis.  Collagen synthesis is how muscles, tendons, ligaments, cartilage and bone heal.  Meaning athletes will be able to recover quicker, maintain strength and optimize performance throughout the season.

Clinical Application

In the video I am working with a College Baseball Pitcher that is experiencing medial forearm wrist flexor pain and stiffness after pitching outings.  The goal of the BFR treatment is to create lactate buildup and cell swelling, stress the irritated tissues at a low pain free load, build posterior cuff strength and strengthen the stride leg in a task specific environment.  The 3 UE treatments are specific to the Right arm tissues while the 1 LE treatment does provide specific Left leg benefits but the goal is more of a global Growth Hormone response because of larger muscle group activation.

Share this article with someone you think it will help, and for more info on BFR check out OwensRecoveryScience.com