Do I Need a Brace After ACL Surgery?

IMG_5542

By Ziad Dahdul, DPT

To say that bracing after an anterior cruciate ligament (ACL) reconstruction is controversial is an understatement. You ask any physical therapist their opinion on the effectiveness of bracing and you’re likely to get dozens upon dozens of different answers. Our experiences with this injury will 100% guide our opinions as any sports physical therapist has seen this injury way too many times to count.

But what does the literature actually say? That’s what I set out to find out when asking two questions:

  • Should the athlete be braced ealry on following ACL reconstruction?
  • Should athletes be braced as they near return to sport (RTS)?

Post-op

First, let’s look at bracing in the acute and sub-acute stages post surgery. Many studies examined the effects of bra cing on joint effusion and knee stability in the early stages of rehabilitation post ACLR. One study found that when bracing was randomized in patients during the first three weeks post-ACLR, there were no differences in joint effusion at the 3- or 12-month marks after surgery (1).

In regards to knee stability, another study showed that acute bracing is used in the initial week or two of recovery in order to protect the quadriceps inhibited knee from sudden flexion under weight bearing loads (2). This can provide both an external support in addition to peace of mind to the athlete knowing that they are supported during a vulnerable period of the rehab process.

Although these are just two examples, we haven’t seen enough research in support or against the use of bracing in the early stages of the rehab process to conclusively lean in one direction or the other. In the absence of conclusive evidence, this is where we lean on surgeon preference/outcomes, the clinician’s experience, and the confidence level of the athlete when making a decision like this.

Return to Sport

When taking a look at functional bracing on athletes upon return to sport, we find evidence both in favor of bracing and against its use;  however, the majority of the research lean against its use long term. One study found that functional bracing does not protect the reconstructed ACL nor improve long-term patient outcomes when compared to non-braced participants. (2). Also, another systematic review showed that post operative bracing does not help with pain, function, rehabilitation, or stability. (3)

The two studies above are just the tip of the iceberg as the majority of studies I came across showed no clinically significant differences when bracing versus not. Many will argue that the use of bracing plays a large role in the athlete’s confidence in their reconstructed knee as they initially return to their respective sport. I do agree that knowing your athlete and their mental state goes a long way in the decision making process and should be a factor in the decision making process.

At the end of the day, clinical experience and research are two pillars of evidence based practice. We must use both as a means of guiding how we practice and how we help our athletes return to sport. While the literature is by no means conclusive in one direction or the other, we have to take into account the mental component as athletes near clearance to return to their respective sports. And that includes the confidence that wearing a brace affords certain athletes.

In the absence of conclusive, high level evidence (as is the case here), making decisions for that individual patient is crucial and must take into account the evidence, clinical experience, surgeon expertise, and patient preference. As clinicians, it is in our athlete’s best interest to do everything we can to help guide them through this arduous process so long as we don’t create dependency and give them a “crutch”. It’s a fine line, but it’s something that we grapple with in the clinic on a day to day basis.

ziad Blog post written by Ziad Dahdul, PT, DPT, OCS, is the owner of Ignite Phyzio & Sports Performance, a concierge physical therapy practice in Southern California specializing in one-on-one care. Connect with him on Instagram (@ignitephyzio and @zeeadd)

 

References

  1. Lindstrom M, Wredmark T, Wretling ML, Henriksson M, Fellander-Tsai L. Post-operative bracing after ACL reconstruction has no effect on knee joint effusion. A prospective, randomized study. The Knee Journal. 2015;22(6):559-564.
  2. Smith SD, Laprade RF, Jansson KS, Arøen A, Wijdicks CA. Knee Surg Sports Traumatol Arthrosc. 2014 May; 22(5):1131-41
  3. Rodriguez EC. Knee bracing after anterior cruciate ligament reconstruction. Orthopedics. 2016;39(4);602-609.

 

 

Lisfranc Injuries

IMG_4657

Lisfranc joint injuries are the second most common foot injury in athletes, yet are often missed or misdiagnosed.¹ Lisfranc (midfoot) injuries refer to bony or ligamentous compromise of the tarsometatarsal and intercuneiform joint complex. The Lisfranc ligament connects the plantar portion of the medial cuneiform to the base of the second metatarsal.² Without proper treatment, a chronic Lisfranc injury may lead to longitudinal arch collapse, abduction of the forefoot, and midfoot arthritis.³ Physical therapy can help individuals regain functional mobility and return to sport or activities.

Mechanism of Injury

High-energy: Forced hyper-plantarflexion with a valgus/varus component. Example: Car accident, crush injury or fall from a height.

IMG_4656

Low-energy: Forced hyper-plantarflexion of the midfoot with an axial load through the foot.  Example: Competitive sports or a ground level fall.

The midfoot injury may involve the ligament, bone, or a combination of both.

Signs and Symptoms

Bruising and swelling over the plantar surface of the midfoot, pain with palpation over the midfoot for up to five days after injury, pain with weight-bearing that is typically exacerbated with heel raises.¹

Non-operative Treatment

Stable injuries (partial sprains and extra-articular fractures) are treated non-operatively. Typically an immobilization boot is worn for up to 6 weeks, gentle range of motion exercises are performed, and weight-bearing is progressed as tolerated.² Treatment focuses on restoration of a normal gait pattern and proprioceptive training.¹

Operative Technique

Unstable or displaced injuries of the midfoot require surgical management. Open reduction and internal fixation (ORIF) with transarticular screw fixation has been the gold standard. Traditional screws are typically removed at 4 months.³ However, ORIF with primary arthrodesis has become more popular as it’s been associated with a lower reoperation rate for hardware removal compared to ORIF alone.²

Post-operative management

Post-operative patients are initially placed in a non-weight bearing cast and progress to a walking boot. Full weight bearing is initiated by the 8th week postoperatively.¹ Athletes may transition from a walking boot into a stiff-soled athletic shoe with a semirigid orthotic device or an athletic shoe with a graphite insole added for stiffness.³

IMG_4988 Blog Post written by Kathleen Hank, DPT.  At the time of publishing Kathleen was in her Sports Ortho Clinical with me at Catz Physical Therapy.

References:

  1. Lorenz DS, Beauchamp C. Functional progression and return to sport criteria for a high school football player following surgery for a Lisfranc injury. Int J Sports Phys Ther. 2013;8(2):162-171.
  2. Clare MP. Lisfranc injuries. Curr Rev Musculoskelet Med. 2017;10(1):81-85. doi:10.1007/s12178-017-9387-6.
  3. Haytmanek Jr. CT, Clanton TO. Ligamentous Lisfranc injuries in the athlete. Oper Tech Sports Med. 2014;22(4):313-320.

 

High vs Low Ankle Sprains

By Grant Uyemura, DPT

High ankle sprains are more common in high impact sports and usually occur when the
foot is forced into external rotation with a planted, dorsiflexed foot. This mechanism of injury will cause the talus to widen the ankle mortise which can injure or tear the syndesmosis. The syndesmosis is made up of the anterior inferior tibiofibular ligament, interosseous ligament, interosseous membrane, posterior inferior tibiofibular ligament, and transverse ligament.

Lateral ankle sprains also known as inversion sprains are the most common orthopedic
injury and account for 85% of all ankle injuries. Lateral ankle sprains usually happen when the foot is point down, plantarflexed and rolls inward. The anterior talofibular, calcaneofibular, and posterior talofibular ligaments are the most common ligaments to get injured during a lateral ankle sprain.

High ankle sprains will take longer to heal and are more likely to create long-term
dysfunction compared to lateral ankle sprains. However, high ankle sprains are less common than lateral ankle sprains. Both injuries can be treated through physical therapy with conservative treatments.

The first phase will be protecting the joint while minimize pain, inflammation, weakness, and loss of motion.

The second phase will focus on normalizing joint mobility, strength, neuromuscular control, and return to activities of daily living.

The last phase will prepare the athlete for return to sport activities.

img_2534Blog post written by Grant Uyemura, DPT Student from University of St. Augustine. At the time of publishing Grant was in a clinical rotation with me at Catz PTI.

References:

1. Williams GN, Allen EJ. Rehabilitation of Syndesmotic (High) Ankle Sprains. Sport Heal A Multidiscip Approach. 2010;2(6):460-470. doi:10.1177/1941738110384573.

2. Hunt K. J, Phisitkul, P Pirolo J, Amendola A. High Ankle Sprains and Syndesmotic Injuries in Athletes. Journal of the American Academy of Orthopaedic Surgeons. .
2015;23(11):661-673. doi:10.5435/jaaos-d- 13-00135

3. Albin, S. Rehabilitation of the Athlete Following Ligamentous Injury. Oral Presentation at: 12 th Annual CU Sports Medicine Fall Symposium. Meeting; September 22. 2017; Boulder,
CO.

Concussion: When Can I Return to Sport?

By Grant Uyemura, DPT Student

A concussion is a mild traumatic brain injury (TBI) that occurs when a head impact jars or shakes the brain inside the skull. This can damage neural pathways, which can lead to neurological disturbances. Symptoms can affect your physical, cognitive, behavioral, and emotional well-being.

Physical signs such as headaches, dizziness, sleep disturbances, nausea, vomiting, noise & light sensitivity, loss of consciousness.

Cognitive signs are confusion, slow reaction time, memory problems, poor judgement, inability to focus.

Behavioral changes may be confrontational demeanor, explosive temper fearfulness, impatient, hypervigilance.

Emotional changes such as depression, agitation, irritability, anxiety, and frequent mood changes man also be experienced. 90% of diagnosed concussions do not involve loss of consciousness, so it is important to understand common signs and symptoms.

Return to Sport Stages

Following a concussion, it is recommended to rest for 24-48 hours before starting stage
1 of the return to sport protocol. If the athlete is able to complete the stage without concussion related symptoms, then they can progress to the next stage. There should be at least 24 hours for each step of the progression. At minimum, it would take athletes 1 week to proceed through the full rehabilitation protocol before returning to play.

img_2534 Blog post written by Grant Uyemura, DPT Student from University of St. Augustine. At the time of publishing Grant was in a clinical rotation with me at Catz PTI.

References:

1. McCrory P, Meeuwisse W, Dvorak J, et al Consensus statement on concussion in sport—the 5 th  international conference on concussion in sport held in Berlin, October 2016 Br J Sports Med Published Online First: 26 April 2017. doi: 10.1136/bjsports-2017- 097699

2. Parker M, Lecture presented: Mild Traumatic Brain Injury, How to Identify and Treat
Concussions with Compassion at the University of Saint Augustine for Health Sciences, San Marcos, CA.

Why is the Rotator Cuff Important?

By Grant Uyemura, DPT Student

Rotator cuff tendinopathies affect 20-30% of the general population and becomes more prevalent and disabling with age. 1 The rotator cuff is made up of 4 muscles supraspinatus, infraspinatus, teres minor, and subscapularis. These muscles help stabilize the humeral head within the glenoid fossa and prevent superior humeral head migration during overhead movements. 2

Weakness of the rotator cuff can lead to shoulder impingement, tendonitis, bursitis, and labral tears. Looking at Jobe’s instability continuum. 3
1. Rotator cuff weakness generally occurs first
2. Functional instability follows prolonged rotator cuff weakness
3. Capsular laxity, which develops over time
4. Subluxation due to inability of the humeral head to center in the glenoid during motion
5. Rotator cuff/labral tearing (late-stage disease of secondary impingement)

Best Exercises

Reinold et al., 2,4 found that the best supraspinatus exercise was a standing or prone full can. A standing full can was found to have decreased deltoid activation compared to the prone full can. Sidelying external rotation with 0º of abduction was found to be the best exercise to strengthen the infraspinatus and teres minor. Internal rotation at 0º or 90º of abduction was the best exercise to strengthen the subscapularis. Click here or photos for link to videos.

 img_2934 img_2935 img_2936

img_2937 img_2938

These isolated exercises are a good starting point and are great for a basic home program.  However, for best results they should be used in conjunction with a more comprehensive and integrated rehab routine.

img_2534Blog post written by Grant Uyemura, DPT Student from University of St. Augustine. At the time of publishing Grant was in a clinical rotation with me at Catz PTI.

References:

1. Wies JT, Humphreys H, Latham M, et al. A randomized placebo-controlled trial of PT for RTC tendinopathies [abstract]. J Orthop Sports Phys Ther. 2005;35:A5.

2. Reinold MM, Escamilla R, Wilk KE. Current Concepts in the Scientific and Clinical
Rationale Behind Exercises for Glenohumeral and Scapulothoracic Musculature. J Orthop
Sport Phys Ther. 2009;39(2):105-117. doi:10.2519/jospt.2009.2835.

3. Page P, Frank C, Lardner R. Assessment And Treatment Of Muscle Imbalance. Champaign [etc.]: Human kinetics; 2010.

4. Reinold MM, Wilk KE, Fleisig GS, et al. Electromyographic Analysis of the Rotator Cuff
andDeltoid Musculature During Common Shoulder External Rotation Exercises. J Orthop
Sport Phys Ther. 2004;34(7):385-394. doi:10.2519/jospt.2004.34.7.385.

Why are Strong Glutes Important?


By Grant Uyemura, DPT Student

What do the glutes do?

The glute is made up of 3 muscles glute maximus, medius, and minimus. The main action of the glute maximus is hip extension and external rotation. The glute medius acts as a hip abductor with anterior fibers assisting internal rotation while the posterior fibers aid in external rotation. The glute minimus is responsible for hip abduction and internal rotation.Why are strong glutes important?

Weak glutes can cause low back/hip pain, iliotibial band syndrome, patellofemoral pain
syndrome, and chronic ankle sprains.

Best exercises for glutes?

According to Distefano et al. they found the best glute medius exercises were side-lying hip abduction and the best glute maximus exercises was the single leg deadlifts and single leg squat. Boren et al. found that a front plank with hip extension was the best glute maximus exercise while a side plank with hip abduction was best for the glute medius. Both studies found that the best overall exercise for glute strengthening was a single leg squat.

img_2534Blog post written by Grant Uyemura, DPT Student from University of St. Augustine. At the time of publishing Grant was in a clinical rotation with me at Catz PTI.

1. Boren K, Conrey C, Le Coguic J, Paprocki L, Voight M, Robinson TK. Electromyographic
analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J
Sports Phys Ther. 2011;6(3):206-223.

2. Distefano LJ, Blackburn JT, Marshall SW, Padua DA. Gluteal Muscle Activation During
Common Therapeutic Exercises. J Orthop Sport Phys Ther. 2009;39(7):532-540.
doi:10.2519/jospt.2009.2796.

3. Macadam P, Cronin J, Contreras B. an Examination of the Gluteal Muscle Activity
Associated With Dynamic Hip Abduction and Hip External Rotation Exercise: a Systematic Review. Int J Sports Phys Ther. 2015;10(5):573-591.

What is Femoroacetabular Impingment?

By Grant Uyemura, DPT Student

Femoroacetabular Impingement (FAI) is abnormal contact between the femoral head and acetabulum, which can cause hip pain, labrum, and/or cartilage damage. There are three different types of FAI’s: Cam, Pincer, and mixed. Cam impingement lesions are more prevalent in younger males than in females. Pincer lesions are more common in middle aged, active women.1 A study by Tannast et al. found that 86% of patients have a combination of both cam and pincer impingement.2

Types of FAI

Cam: Aspherical femoral head tries to fit into a spherical socket. Can cause chondrolabral junction separation due to shearing force.

Pincer: Over coverage of acetabulum socket, can cause labrum crushing and degeneration/ ossification.

Mixed: Combination of cam and pincer deformities.
Clinical Presentation

• Anterior or anterolateral hip/groin pain

• Stiffness

• Painful hip flexion past 90º and internal rotation

• Pain with prolonged sitting

What Physical Therapy can do?

The goal of physical therapy is to increase range of motion, increase strength, and decrease pain in order to maximize function and return to your prior level of function. Surgery should only be considered when conservative treatments do not control symptoms or functional limitations are unacceptable.4

 Blog post written by Grant Uyemura, DPT Student from University of St. Augustine. At the time of publishing Grant was in a clinical rotation with me at Catz PTI.

References:

1. ​Kuhns BD, Weber AE, Levy DM, Wuerz TH. The Natural History of Femoroacetabular Impingement. Front Surg. 2015;2(November):1-7. doi:10.3389/fsurg.2015.00058.

2. ​Tannast M, Siebenrock KA, Anderson SE. Femoroacetabular impingement: Radiographic diagnosis – What the radiologist should know. Am J Roentgenol. 2007;188(6):1540-1552. doi:10.2214/AJR.06.0921.

3. ​Stephanie Pun, MD, Deepak Kumar, PT, PhD, and Nancy E. Lane M. Femoroacetabular Impingement. Nih. 2016;67(1):17-27. doi:10.1002/art.38887.Femoroacetabular.

4. ​Enseki K, Harris-Hayes M, White DM, et al. Nonarthritic Hip Joint Pain. J Orthop Sport Phys Ther. 2014;44(6):A1-A32. doi:10.2519/jospt.2014.0302.