Do I Need a Brace After ACL Surgery?


By Ziad Dahdul, DPT

To say that bracing after an anterior cruciate ligament (ACL) reconstruction is controversial is an understatement. You ask any physical therapist their opinion on the effectiveness of bracing and you’re likely to get dozens upon dozens of different answers. Our experiences with this injury will 100% guide our opinions as any sports physical therapist has seen this injury way too many times to count.

But what does the literature actually say? That’s what I set out to find out when asking two questions:

  • Should the athlete be braced ealry on following ACL reconstruction?
  • Should athletes be braced as they near return to sport (RTS)?


First, let’s look at bracing in the acute and sub-acute stages post surgery. Many studies examined the effects of bra cing on joint effusion and knee stability in the early stages of rehabilitation post ACLR. One study found that when bracing was randomized in patients during the first three weeks post-ACLR, there were no differences in joint effusion at the 3- or 12-month marks after surgery (1).

In regards to knee stability, another study showed that acute bracing is used in the initial week or two of recovery in order to protect the quadriceps inhibited knee from sudden flexion under weight bearing loads (2). This can provide both an external support in addition to peace of mind to the athlete knowing that they are supported during a vulnerable period of the rehab process.

Although these are just two examples, we haven’t seen enough research in support or against the use of bracing in the early stages of the rehab process to conclusively lean in one direction or the other. In the absence of conclusive evidence, this is where we lean on surgeon preference/outcomes, the clinician’s experience, and the confidence level of the athlete when making a decision like this.

Return to Sport

When taking a look at functional bracing on athletes upon return to sport, we find evidence both in favor of bracing and against its use;  however, the majority of the research lean against its use long term. One study found that functional bracing does not protect the reconstructed ACL nor improve long-term patient outcomes when compared to non-braced participants. (2). Also, another systematic review showed that post operative bracing does not help with pain, function, rehabilitation, or stability. (3)

The two studies above are just the tip of the iceberg as the majority of studies I came across showed no clinically significant differences when bracing versus not. Many will argue that the use of bracing plays a large role in the athlete’s confidence in their reconstructed knee as they initially return to their respective sport. I do agree that knowing your athlete and their mental state goes a long way in the decision making process and should be a factor in the decision making process.

At the end of the day, clinical experience and research are two pillars of evidence based practice. We must use both as a means of guiding how we practice and how we help our athletes return to sport. While the literature is by no means conclusive in one direction or the other, we have to take into account the mental component as athletes near clearance to return to their respective sports. And that includes the confidence that wearing a brace affords certain athletes.

In the absence of conclusive, high level evidence (as is the case here), making decisions for that individual patient is crucial and must take into account the evidence, clinical experience, surgeon expertise, and patient preference. As clinicians, it is in our athlete’s best interest to do everything we can to help guide them through this arduous process so long as we don’t create dependency and give them a “crutch”. It’s a fine line, but it’s something that we grapple with in the clinic on a day to day basis.

ziad Blog post written by Ziad Dahdul, PT, DPT, OCS, is the owner of Ignite Phyzio & Sports Performance, a concierge physical therapy practice in Southern California specializing in one-on-one care. Connect with him on Instagram (@ignitephyzio and @zeeadd)



  1. Lindstrom M, Wredmark T, Wretling ML, Henriksson M, Fellander-Tsai L. Post-operative bracing after ACL reconstruction has no effect on knee joint effusion. A prospective, randomized study. The Knee Journal. 2015;22(6):559-564.
  2. Smith SD, Laprade RF, Jansson KS, Arøen A, Wijdicks CA. Knee Surg Sports Traumatol Arthrosc. 2014 May; 22(5):1131-41
  3. Rodriguez EC. Knee bracing after anterior cruciate ligament reconstruction. Orthopedics. 2016;39(4);602-609.



ACL Rehab – Finding The Right Physical Therapist Matters

By Wesley Wang, DPT

In my opinion, not every physical therapist is qualified to treat ACLs from start to finish. While this statement may ruffle some feathers, let me present you with an analogy that may help put things in perspective. If your car starts having issues, do you take it to just any average mechanic or try to find the best one for your specific type of car? If you’re looking to improve your skills in a specific sport, do you hire an average coach or try to find a specific one for your specific sport? While these examples aren’t perfect, recovering from ACL surgery is a lengthy process and finding the right therapist can significantly improve outcomes.

There are many components that need to be addressed in physical therapy to ensure full recovery.  Research provides detailed guidelines on specific factors including range of motion, strength, movement assessments and return-to-sport testing which should all consistently be addressed to ensure athletes are safe to go back to sports. These seemingly minor details can significantly decrease second ACL injuries which are reported to be approximately 1 in every 4 to 5 patients. (1,3)  Coming back to the mechanic example, would you want a mechanic who wasn’t detail oriented examining your car? Would you want a coach who didn’t use the latest methods to optimize your training sessions?

The entire ACL recovery process takes approximately 9-12 months and sometimes even longer. Research tells us that nine months is the minimum recovery time after surgery and returning too early increases the risk of a second ACL injury. (2) There is simply too much to address in ACL rehabilitation and returning to sports too early is just not worth the risk.

There are two major components of ACL rehabilitation, strength and neuromuscular control. Limb asymmetries which includes range of motion and strength are pivotal for optimal recovery. One of the primary foundations of ACL rehabilitation is achieving full range of motion. For example, if the knee can’t fully extend (straighten), it makes it extremely difficult for the quadriceps to regain full strength. Obtaining greater than 90% quadricep strength and a hamstring-to-quad ratio of at least 85% (compared to the non-operated knee) have been shown to significantly decrease second ACL injuries. (1,2)

Dynamic neuromuscular control involves how the athlete is able to control their body when performing tasks such as balancing, jumping and landing. When performing these tasks, the athlete should be able to demonstrate proper control of their trunk, hips, and knee. For example, when landing on the surgical knee (once it’s safe to do so of course), there should be minimal upper body movement such as the trunk swaying from side to side or the hips twisting and minimal knee movement particularly into valgus (inward). (1,3) Return-to-sport tests identify deficiencies and one study found that successfully completing return-to-sport criteria reduces re-injuries by 32.5%. (2)

Additionally, physical therapists should have knowledge of various exercises to consistently challenge patients in their recovery process which includes both strength and dynamic control. This is a big issue in rehab as I’ve heard from many patients that they weren’t challenged in their previous physical therapy facilities and instead repetitively performed simple exercises. Athletes should be challenged in every physical therapy session or we are doing our athletes a disservice.

Finding the right physical therapist for ACL recovery is absolutely necessary to safely return to sports. The physical therapist should utilize up-to-date research and be able to properly progress and challenge patients to significantly improve outcomes following ACL surgery.

IMG_4544 Blog post written by Wesley Wang, DPT.  Wesley practices in Rockville MD at Healthy Baller Sports Medicine.  He is a go-to resource for ACL & sports rehab info, find him on Instagram @wesleywang.dpt


  1. Hewitt T, Di Stasi S, Myer G. Current Concepts for Injury Prevention in Athletes After Anterior Cruciate Ligament Reconstruction. Am J Sports Med. 2013 Jan: 41(1): 216-224
  2. Grindem H, Snyder-Mackler L, Moksnes H, Engebretsen L, Risberg M. Simple decision rules can reduce reinjury risk by 84% after ACL reconstruction: the Deleware-Oslo ACL cohort study. British Journal of Sports Medicine. 2016 May.
  3. Wiggins AJ,Grandhi RK, Schneider DK, Stanfiel D, Webster KE, Myer GD. Risk of Secondary Injury in Younger Athletes After Anterior Cruciate Ligament Reconstruction: A Systematic Review and Meta-analysis. Am J Sports Med. 2016 Jul:44(7):1861-76.

The Influence of Hormone Levels on ACL Laxity: Are We Missing a Piece of the Puzzle?

By Steph Allen, DPT, OCS

How many of you out there have torn or know someone who has torn their ACL? How many of you, or the ones you know, are female? Have you/they injured the ACL multiple times? How many have injured BOTH knees one or more times?

If we go with what research statistics have shown, there are likely a large number of you that answered “yes,” “two or more times,” “most are female,” or “both right and left knees.” These are common responses we hear. Not super promising.

The thing is, we seem to know so much about the anatomy of the ACL, injury mechanisms, risk factors, and potential prevention. However, injury rates are not improving, and females remain [continue to be] at a much higher risk of both initial injury and of reinjury.

Frankly, I think we are missing something here, people!

Let’s first take a look at what we DO know, based on years of scientific research:

  1. ACL injuries are often non-contact in nature
  2. ACL injuries are 2-6 times more likely in females than in males
  3. Re-injury and injury to the opposite side are all too common
  4. Rates of return to high level/previous levels of sport are low
  5. Injury prevention programs are starting to take better shape, and it is more widely accepted that a focus on jump/land technique and neuromuscular control is essential
  6. Around puberty, females tend to show a decrease in strength and power and generally poorer LE control and mechanics with jump and land, as well as cutting tasks, as compared to their male peers

This is all extremely helpful, and should be taken into account with all athletes and patients. BUT, I’d like to hop outside of the box for a sec (with pristine control, of course) and explore a possible “X” factor in this conundrum…

I want to look more closely at the impact that hormones have on the ligament complex and how this differs in males vs. females. We have done a great job with researching risk factors, and developing solid injury prevention/risk reduction programs for athletes. However, the sex disparity in ACL injury is still significant.

So let’s dive in a bit with the sparknotes of the research that has been done regarding hormonal influences on ligament laxity…

WHAT THEY DID: They took ACL’s, exposed them to the various hormones present during different phases of the menstrual cycle and measured “laxity” via tensile strength (resistance to pull).

WHAT THEY FOUND: Greatest laxity resulted when the ACL was exposed to Estradiol, which is at its peak in ovulatory phase (10-14 day mark). They also noted increased laxity when it was exposed to relaxin (another hormone floating around during the cycle). AND… they found these exposures to have profound effects on tissue remodeling. [NOTE: due to variability between individuals, it is difficult to assign highest risk to one phase].

Screen Shot 2018-03-20 at 5.39.58 AM

Alright, that’s cool. But, how does this work? How can these hormones actually make the ligament more lax?

Here is the mind blow…There are hormone RECEPTORS ON THE ACL!!

When the hormones bind to the ligament, this can affect gene expression and collagen metabolism in a way that can influence the characteristics of the ACL and other soft tissues around it. (*This is key- it is not just the ACL that is affected- it is ALL the soft tissues).

A bit more about why collagen matters: In tendon tissue; collagen accounts for approximately 60–85% of the dry mass of the extracellular matrix (mostly type I collagen). Tiny collagen fibrils group together within the tendon and form “functional fibers”, whose purpose is the transmission of force between muscle and bone. This is HUGE! If the metabolism/cellular turnover and production of the tissue that is largely involved in force transmission at a joint is being affected, this could be a big contributor to the problem of overall joint stability and injury risk.

pasted image 0


Okay so enough of the cell and biology stuff, let’s take a step back and look at the bigger picture. Let’s take into account movement patterns and neuromuscular control, which we all know is MAJORLY important, both in risk reduction and post-injury rehab/return to sport.

Park et al. found increased loads during cutting tasks in females during their cycle. The most common non contact MOI is deceleration with a quick change in direction, such as a plant and twist that occurs with cutting in sport. In biomechanical terms,  this is combined valgus with tibial IR, putting the ACL on high tension (great explanation in the @cvasps podcast with Tim Hewitt- click here or see references below). These two things, combined with the fact that we now have reason to believe that hormones can increase ligament laxity, may just be what is creating the perfect storm for ACL injury in females…

Lower tissue tolerance/greater tissue laxity + Game type speed and force on ligament with cut/jump/land + physical/mental fatigue and poor mechanics = Tissue failure

pasted image 0-2

Oh man, so what in the world can we do about this? You might argue, hey, we can’t control something such as the menstrual cycle; it’s part of every healthy female’s life. And I can’t disagree with that. However, I cannot, and WILL NOT believe that there are not some actions we can take to combat these biological constants.

First and foremost, let’s make risk reduction/injury prevention programs more of the norm in youth athletics and let’s start these programs EARLY. Thompson-Kolesar et al. found that pre-adolescent female soccer players demonstrated greater improvement in double leg jump tasks after participating in an injury prevention warm up program than did older adolescent females. So if we can reach these kids before skeletal maturity and while they are still learning motor patterns for the first time, we can be more confident that they are able to control their sports specific movements even when they are fatigued or the movements are unplanned.

Second, let’s keep encouraging females to get really strong for their sport, thereby making it “cool” and more socially accepted during teenage years when being cool is as important as breathing oxygen. Thompson-Kolesar et al. also found that the rapid bone growth that occurs in adolescence correlates with an increase in muscle power and strength in males, but corresponds with a decrease in strength and dynamic knee stability in females. So now we have a larger human and larger bones to support, coupled with less of an ability to produce force and decreased neuromuscular control. Yuck. Let’s get ahead of this and address BOTH the strength and motor control deficits that seem to poke their heads out during puberty and adolescence.

Third, let’s stop burning the candle at both ends. This part may be a bit on the opinion end of the spectrum, but I think many would agree. So many young athletes, especially elites, are training SO much and training a single sport. Under-recovery and repeated motor patterns without exposure to movement variability is also a piece of the problem puzzle, if you ask me. I am an advocate of proper recovery and promoting multi-sport participation, regardless of age.

Lastly, let’s please make the conversation surrounding the menstrual cycle as it pertains to training less taboo, more the norm, and a bit more influential. Sex differences in injury cannot be fully explained by strength or motor control alone. There is something else to this! If there is a way we can combat the influence of hormones on ligament laxity and overall injury risk, ultimately leveling the playing field (literally and figuratively), then let’s do it! I think this warrants a deeper dive into research and investigating longer term data so that we can actually solve this puzzle and get these injury and reinjury rates under control.

I hope this piece sparks some interest and discussion, and results in more people asking outside of the box questions. Our athletes, patients, and clients deserve it. Let’s go!

_DSC4770 Blog Post written by Steph Allen, DPT, OCS. Steph has a particular passion for ACL research and rehabilitation and hopes to be instrumental in making positive changes, both in in post op rehab and risk reduction programs.

I asked Steph to write on this topic after hearing her Interview on the CVASPS Podcast, click here to listen. This is an important topic if you have daughters involved in sports, or if you coach, train & rehab female athletes.

Steph is on staff at Boston PT & Wellness in Medford MA. You can find her on Instagram @stephallen.dpt


CVASPS Podcast with Tim Hewitt:

Thompson-Kolesar JA, Gatewood CT, Tran AA, Silder A, Shultz R, Delp SL, Dragoo JL. Age Influences Biomechanical Changes After Participation in an Anterior Cruciate Ligament Injury Prevention Program. Am J Sports Med. 2018 Mar;46(3):598-606. Doi: 10.1177/0363546517744313. Epub 2017 Dec 27. PubMed PMID: 29281799.

Von Rosen P, Kottorp A, Fridén C, Frohm A, Heijne A. Young, talented and injured: Injury perceptions, experiences and consequences in adolescent elite athletes. Eur J Sport Sci. 2018 Mar 3:1-10. Doi: 10.1080/17461391.2018.1440009. [Epub ahead of print] PubMed PMID: 29504456.

Leblanc DR, Schneider M, Angele P, Vollmer G, Docheva D. The effect of estrogen on tendon and ligament metabolism and function. J Steroid Biochem Mol Biol. 2017 Sep;172:106-116. doi: 10.1016/j.jsbmb.2017.06.008. Epub 2017 Jun 16. Review. PubMed PMID: 28629994.

Park SK, Stefanyshyn DJ, Ramage B, Hart DA, Ronsky JL. Relationship between knee joint laxity and knee joint mechanics during the menstrual cycle. Br J Sports Med. 2009 Mar;43(3):174-9. doi: 10.1136/bjsm.2008.049270. Epub 2008 Aug 26. PubMed PMID: 18728055.




Why are Strong Glutes Important?

By Grant Uyemura, DPT Student

What do the glutes do?

The glute is made up of 3 muscles glute maximus, medius, and minimus. The main action of the glute maximus is hip extension and external rotation. The glute medius acts as a hip abductor with anterior fibers assisting internal rotation while the posterior fibers aid in external rotation. The glute minimus is responsible for hip abduction and internal rotation.Why are strong glutes important?

Weak glutes can cause low back/hip pain, iliotibial band syndrome, patellofemoral pain
syndrome, and chronic ankle sprains.

Best exercises for glutes?

According to Distefano et al. they found the best glute medius exercises were side-lying hip abduction and the best glute maximus exercises was the single leg deadlifts and single leg squat. Boren et al. found that a front plank with hip extension was the best glute maximus exercise while a side plank with hip abduction was best for the glute medius. Both studies found that the best overall exercise for glute strengthening was a single leg squat.

img_2534Blog post written by Grant Uyemura, DPT Student from University of St. Augustine. At the time of publishing Grant was in a clinical rotation with me at Catz PTI.

1. Boren K, Conrey C, Le Coguic J, Paprocki L, Voight M, Robinson TK. Electromyographic
analysis of gluteus medius and gluteus maximus during rehabilitation exercises. Int J
Sports Phys Ther. 2011;6(3):206-223.

2. Distefano LJ, Blackburn JT, Marshall SW, Padua DA. Gluteal Muscle Activation During
Common Therapeutic Exercises. J Orthop Sport Phys Ther. 2009;39(7):532-540.

3. Macadam P, Cronin J, Contreras B. an Examination of the Gluteal Muscle Activity
Associated With Dynamic Hip Abduction and Hip External Rotation Exercise: a Systematic Review. Int J Sports Phys Ther. 2015;10(5):573-591.

Meniscal Tears & Consideration of PT Instead of Surgery


instagram-icons facebook twitter youtube-icon-full_color

By Greg Louie, DPT

The menisci lie between the tibia and femur. They stabilize the knee into flexion and extension, assist in joint lubrication and nutrition, and distribute compressive forces to reduce stress on the articular cartilage with load-bearing and load transmission.(1) Meniscal tears are quite common,the mean annual incidence of meniscal injuries are 66 for every 100,000 individuals.(2)

There are two classifications of meniscal tears: traumatic and degenerative. For a meniscus tear to classified as traumatic, the meniscus must be healthy and there must be an injury to the knee as a result of a forced movement.(3) These types of tears are higher amongst young adults because of an increased percentage of this population participating in high-level activities and sports.(4) A forced twisting movement with the knee bent is the common mechanism of injury for traumatic lesions. Degenerative tears occur in the absence of trauma and result from deterioration of the meniscus from abnormal loading forces to the knee.(3) Individuals with a body mass index greater than 25, those who are older then 60, and those who work in jobs requiring increased kneeling, squatting, and stair climbing are at a significantly higher risk for degenerative meniscal tears.(4)

Meniscus injures are often accompanied by other ligamentous injuries of the knee.(3) A combination of injury to the meniscus, medial collateral ligament, and the anterior cruciate ligament is known as the unhappy triad of the knee.(5)

In the United States, partial meniscectomies are the most common orthopedic surgical procedure(6) but does this mean everyone with a torn meniscus should opt for surgery? Several studies have found that surgery is not always necessary and that physical therapy should be considered prior to surgery. Sihvonon and associates found no difference in partial menisectomy compared to sham surgery.(7) Katz and colleagues found no difference in outcomes with arthroscopic partial meniscectomy combined with physical therapy compared to physical therapy alone.(8) Surgery should be considered as a last resort when all other interventions (including physical therapy) have failed.

A physical therapist will assess the severity of the tear and provide interventions to control the pain, inflammation, and swelling. As the knee beings to heal, they can help you regain full range of motion, get you back walking pain free, and build strength and coordination to prevent reinjury.

Greg Blog post written by Greg Louie, DPT Student from University of St. Augustine. At the time of publishing Greg was in a clinical rotation at Catz PTI. Follow him on Instagram @sportsperformancerehab


1. Makris EA, Hadidi P, Athanasiou KA. The knee meniscus: structure-function, pathophysiology, current repair techniques, and prospects for regeneration. Biomaterials. 2011;32(30):7411-7431.

2. Hede A, Jensen DB, Blyme P, et al. Epidemiology of meniscal lesions in the knee. Acta Orthop Scand. 1990; 61:435–437.


4. Snoeker BA, Bakker EW, Kegel CA, Lucas C Risk factors for meniscal tears: a systematic review including meta-analysis. J Orthop Sports Phys Ther 43: 352–367. 2885

5. Sbourne K, Nitz P. The O’Donoghue triad revisited. Combined knee injuries involving anterior cruciate and medial collateral ligament tears. Am J Sports Med. 19(5):474–7.

6. Englund M, Guermazi A, Gale D, et al. Incidental meniscal findings on knee MRI in middle-aged and elderly persons. N Engl J Med. 2008; 359:1108-1115.

7. Sihvonen R, Paavola M, Malmivaara A, et al. Arthroscopic partial meniscectomy versus sham surgery for a degenerative meniscal tear. N Engl J Med. 2013; 369(26): 2515–24.

8. Katz JN, Brophy RH, Chaisson CE, et al. Surgery versus physical therapy for a meniscal tear and osteoarthritis. N Engl J Med. 2013; 368:1675-1684

Is Your Lack of Ankle Mobility Increasing Your Risk for Knee Injury?

instagram-iconsfacebooktwitter Follow Chris Butler Sports PT

By Ashley Pena, DPT Student
 According to the NCAA Injury Surveillance system, knee internal derangements accounted for the highest percentage of more severe injuries sustained by college athletes (44.1% in games and 25.5% in practices) and approximately 70% of all game and practice injuries affected the lower extremities. As a result of these studies, much thought has gone into what factors contribute to this in an attempt to prevent, or rehabilitate these injuries while decreasing pain and improving performance. Although there are many factors which have been found to contribute such as muscle weakness, body type, training factors and others, little thought is given to the ankle joint unless it is giving the athlete pain.
When a person lacks dorsiflexion range of motion, often times compensations begin to manifest such as excessive pronation or “fallen arch”,  hip external rotation or “out-toeing” during walking, or lack of knee flexion with landing, all of which can increase the valgus forces on the knee and decrease shock absorption which can place a person more at risk for ACL injury, meniscus injury, or collateral ligament strains. In a systematic literature review done by Mason-McKay et. al, strong evidence was found that a restriction in DF ROM alters landing mechanics with specific studies reporting that altered frontal plane ankle motion (inversion and eversion), reduced sagittal knee excursion, and greater peak knee valgus.
 Blog Post written by Ashley Pena, DPT Student from Cal State Northridge.  Ashley is currently in her final clinical rotation with me at Catz PTI.


  1. Arendt E, Dick R. Knee Injury Patterns Among Men and Women in Collegiate Basketball and Soccer. The American Journal of Sports Medicine. 1995;23(6):694-701.
  2. Dick RM, Putukian M. Descriptive Epidemiology of Collegiate Women’s Soccer Injuries: National Collegiate Athletic Association Injury Surveillance System, 1988–1989 Through 2002–2003. Journal of Athletic Training. 2007;42(2):278-285.
  3. Kerr ZY, Marshall SW. College Sports–Related Injuries — United States, 2009–10 Through 2013–14 Academic Years. Centers for Disease Control and Prevention. Published December 11, 2015. Accessed June 5, 2017.
  4. Mason-Mackay A, Whatman C, Reid D. The effect of reduced ankle dorsiflexion on lower extremity mechanics during landing: A systematic review. Journal of Science and Medicine in Sport. 2017;20(5):451-458. doi:10.1016/j.jsams.2015.06.006.
  5. Taunton JE, Ryan MB, Clement DB, McKenzie DC, Llyod-Smith DF, Zumbo BD.  A retrospective case-control analysis of 2002 running injuries.  Br J Sports Med 2002; 36: 95-101.

What is a Bone Bruise?



By Meggie Morley, DPT Student

The term “bone bruise” can give the impression that it is not a very serious injury, when in reality a bone bruise is one step below a fracture of the bone. FullSizeRender 10A bone bruise occurs when several trabeculae in the bone are broken, whereas a fracture occurs when all the trabeculae in one area have broken.  Trabecular bone is also known as spongey bone.

Bone Structure

A typical bone in the body is comprised of cortical bone, cancellous bone and bone marrow. Cortical bone accounts for roughly 80% of bone structure in the adult human skeleton. The outer layer of cortical bone is the periosteum and the inner layer of cortical bone is the endosteum. Cancellous bone is often referred to a trabecular bone. It is found at the end of long bones and contains a dense network of fibers and blood vessels.

Three Types of Bone Bruises

  1. Subperiosteal hematoma: A bruise that occurs due to an impact on the periosteum that leads to pooling of blood in the region
  2. Intraosseous Bruising: The bruise occurs in the bone marrow and is due to high impact stress on the bone.
  3. Subchondral Bruise: This bruise is bleeding between cartilage and bone such as in a joint.

Symptoms of Bone Bruises

  • Pain and tenderness in the region of injury
  • Swelling in the region of injury
  • Skin discoloration in the region of injury

Bone bruises often occur with joint injuries, such as ankle sprains and ACL tears, therefore a bone bruise can also coincide with stiffness and swelling in the joint.

Diagnosis and Treatment

A bone bruise can only be diagnosed with a MRI, but an X-ray may be used to rule out a fracture. The first line of treatment is to rest and limit activity on the limb. Walking with an assistive device such as crutches is recommended for as long as weight bearing is painful. Physical therapy is also a beneficial treatment in order to maintain full joint mobility and strength during the healing process. Bone bruises often take several months to heal, and possibly longer if the bruise is larger. A study by Boks et al found that the average healing time of a bone bruise was actually 42.1 weeks after a traumatic knee injury. 

  When Steelers QB Ben Roethlisberger suffered a bone bruise during the 2015 playoffs Dr. David Chao explained it like this, “Think of the bones in the knee being covered by articular cartilage like the dirt of the football field has grass on top.  If an elephant stomps on the grass the dirt underneath can be damaged/compressed.  In order to allow the grass (articular cartilage) to rejuvenate and heal, you can’t keep playing football on it.  The “keep off the grass” sign allows for a chance to heal.”

Overall, it is important to allow for bone bruises to heal for as long as needed to ensure that the bone does suffer further damage.

FullSizeRender 9 Blog Post written by Meggie Morley, DPT Student at Columbia University. Meggie is currently in her final Clinical Rotation with me at Catz Physical Therapy Institute.


  1.  Janice Polandit, 5 Things You Need to Know About a Bone Bruise, 2011; Grades of recommendation F
  2. Jelić Đ, Mašulović D. Bone bruise of the knee associated with the lesions of anterior cruciate ligament and menisci on magnetic resonance imaging. Vojnosanitetski pregled. 2011;68(9):762-6.
  4. Boks SS, Vroegindeweij D, Koes BW, Bernsen RM, Hunink MM, Bierma-Zeinstra SM. MRI follow-up of posttraumatic bone bruises of the knee in general practice. American Journal of Roentgenology. 2007 Sep;189(3):556-62.
  5. Bone Photo Credit click here

Synovial Plica Syndrome: Symptoms & Treatment for Anterior Knee Pain


By Tom Sutton, DPT Student

Introduction and Anatomy

In a study by Lee et al, synovial plica syndrome (SPS) of the knee is said to be a cluster of symptoms and not one specific presentation or cause. Some of these problems may consist of pain in the anterior region of the knee, clicking, clunking and popping sounds that can occur during functional activities such as squatting or negotiating stairs.  SPS can affect males and females alike, most commonly between the ages of 10-30. Plica is actually the name of a structure in most peoples’ knees, many are non-symptomatic,”inward folds of the synovial lining,”(1) that can be impinged between the quadriceps tendon and femoral trochlea when the knee flexes between 70-100 degrees.   The plica is attached to the articularis genus muscle and runs into the synovial lining of the knee, located on the medial side of the retropatellar fat pad.  Figure 1 Image-2presents an image of the plica in the knee. The study performed by Lee et al investigated what synovial plica syndrome is, how it can affect people and how to properly treat this type of knee pain.


Given the fact that SPS may bring about a number of complaints and symptoms from patients, it is important to understand exactly what problems are present and how to diagnose SPS in order to demystify this type of knee pain. Lee et al reports is that SPS is most commonly without a mechanism of injury.(1) Plica-related problems in the knee can come about during knee flexion over time such as kneeling and sitting or repetitive exercises like running or biking.(4) The patient is going to complain mostly about pain and a “snapping” sound  on the medial side of the knee joint during flexion.(4) For a complete list by Lee et al, see Table 1 Image-1for signs and symptoms of knee SPS.(1) SPS can also mimic other pathologies such as meniscal problems, osteoarthritis of the knee and patellar tendinopathy.(1) According to Schindler, anterior knee pain is the “cardinal symptom” of plica syndrome (5). Since SPS can be caused by a traumatic mechanism of injury, overuse or associated with co-morbidities such as diabetes, (1) obtaining past medical history becomes more pertinent. Additionally, if the patient were to be younger and around the age of 13, it would be prudent to find out if they have been experiencing growth spurts, as symptoms of SPS can occur during this time.(1)

For more specific information on SPS, here is a printable booklet that is courtesy of Houston Methodist. (4)

Application & Closing Thoughts

Furthermore, if there is a stability or strength problem elsewhere in the body such as the back, hip or ankle, it is possible that this may cause problems in the knee that could explain the idiopathic nature of plica syndrome.(1) There are special tests that can be performed including Hughston’s Plica Test and the Stutter Test.(1) Although special tests do not hold diagnostic value, they can be helpful in ruling in and ruling out pathologies. Applying the knowledge from several SPS studies and sources, there are a number of ways to address a patient with SPS. Finding the cause of the problem should be the priority of the physical therapist as they begin to formulate a program for the patient. Treatment may consist of a wide variety of techniques such as soft tissue manipulation, stretching, functional exercise and postural education. Functional exercise and training will be very important because the patient can learn more efficient movements for everyday lifestyle as well as gain the strength needed in both lower extremities in a closed-kinetic chain (CKC) fashion. Below are a few examples of helpful CKC exercises. 

SPS has been shown to respond well to conservative treatment, (6) and most patients have demonstrated improvement and decreased pain.(1) An important takeaway from this is to understand why the patient is experiencing SPS and address the cause. Otherwise, it is possible the plica problem will linger and surgical methods may be weighed as an option. Although some studies have shown that most patients with failed conservative treatment have had success with surgery,(1) avoiding a resection procedure altogether would be a much better alternative.

img_7501Blog Post written by Tom Sutton, DPT Student at the University of St. Augustine. Tom is currently in his final Clinical Rotation with me at Catz Physical Therapy Institute.


  1. Nixion A, Chandratreya A, Murray J, Lee P. Synovial Plica syndrome of the knee: A commonly overlooked cause of anterior knee pain. The Surgery Journal. 2017;03(01):e9–e16. doi:10.1055/s-0037-1598047.
  1. Griffith CJ, LaPrade RF. Medial plica irritation: diagnosis and treatment. Curr Rev Musculoskelet Med 2008;1(01):53–60
  1. Dandy DJ. Anatomy of the medial suprapatellar plica and medial synovial shelf. Arthroscopy 1990;6(02):79–85
  1. Houston Methodist. Accessed March 12, 2017.
  1. Schindler OS. ‘The Sneaky Plica’ revisited: morphology, pathophy- siology and treatment of synovial plicae of the knee. Knee Surg Sports Traumatol Arthrosc 2014;22(02):247–262
  1. Bellary SS, Lynch G, Housman B, et al. Medial plica syndrome: a review of the literature. Clin Anat 2012;25(04):423–428

ACL Reconstruction: Ally


I completely tore my ACL and partially tore my meniscus. I needed an ACL reconstruction and for part of my meniscus to be shaved off. CATZ was amazing in helping toward my recovery. The community of staff and athletes there is a constant source of support. Chris’s patience and encouragement was instrumental in getting to where I am, now. I was able to be fully medically cleared to attend the United States Naval Academynavy and I look forward to serving my country for years to come.


The views expressed in this article are those of the author and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government.

What Happens to the Patellar Tendon Gap After ACL Harvest?…and other common ACL questions.

patellar tendoninstagram-iconsfacebooktwitter

A common question regarding ACL reconstructions is,  “does the patellar tendon gap heal after the central third is harvested for an ACL graft? This is a great question because as you can see in the photos below one of the patellar tendons appears normal when the quad is on tension, while the other has an obvious gap. Continue reading “What Happens to the Patellar Tendon Gap After ACL Harvest?…and other common ACL questions.”

%d bloggers like this: